Những câu hỏi liên quan
Nghĩa Nguyễn
Xem chi tiết
alibaba nguyễn
1 tháng 2 2017 lúc 6:56

Bạn tìm được GTLN bài này không:

Với \(1951\le x\le2005\)

Tìm GTLN của: \(\frac{x^3}{4}-1008x^2+\frac{2016^2x}{4}\)

Bình luận (0)
Nghĩa Nguyễn
1 tháng 2 2017 lúc 8:06

bài liên quan tới câu trên hả bạn.Để mình cố tìm xem sao

Bình luận (0)
alibaba nguyễn
1 tháng 2 2017 lúc 8:07

Ừ. Nếu giải được câu đó thì giải được câu trên đấy

Bình luận (0)
Trần huy huân
Xem chi tiết
Trần huy huân
Xem chi tiết
Nghĩa Nguyễn
Xem chi tiết
Hung nguyen
14 tháng 2 2017 lúc 14:30

Theo đề bài ta có:\(x+y+z=2016\)

\(\Rightarrow2016-z=x+y\ge2+9=11\)

\(\Rightarrow z\le2016-11=2005\)

Ta lại có: \(x^2+y^2\ge2xy\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{\left(2016-z\right)^2}{4}\)

\(\Leftrightarrow xyz\le\frac{\left(2016-z\right)^2}{4}.z=\frac{z^3}{4}-1008z^2+\frac{2016^2z}{4}\)(1)

Xét hàm số: \(f\left(z\right)=\frac{z^3}{4}-1008z^2+\frac{2016^2z}{4}\)

Ta chứng minh \(f\left(z\right)\) nghịch biến trên \(z\in\left[1951;2005\right]\)

Với mọi \(a,b\in\left[1951;2005\right]\)sao cho với \(a< b\) thì

\(f\left(a\right)-f\left(b\right)=\frac{a^3}{4}-1008a^2+\frac{2016^2}{4}a-\frac{b^3}{4}+1008b^2-\frac{2016^2}{4}b\)

\(=\frac{1}{4}\left(\left(a^3-b^3\right)+\left(-4032a^2+4032b^2\right)+\left(2016^2a-2016^2b\right)\right)\)

\(=\frac{1}{4}\left(a-b\right)\left(a^2+ab+b^2-4032a-4032b+2016^2\right)\)

\(>\frac{a-b}{4}.\left(1951^2+1951.1951+1951^2-4032.2005-4032.2005+2016^2\right)\)

\(=\frac{a-b}{4}.\left(-684861\right)>0\)

\(\Rightarrow f\left(a\right)-f\left(b\right)>0\)

\(\Rightarrow\)Hàm số nghịch biến trên \(\left[1951;2005\right]\)

\(\Rightarrow\)Hàm số đạt giá trị lớn nhất tại z nhỏ nhất

\(\Rightarrow Max\left(f\left(z\right)\right)=\frac{1951^3}{4}-1008.1951^2+\frac{2016^4}{4}.1951=2060743,75\)(2)

Từ (1) và (2) ta có: \(Max\left(xyz\right)=2060743,75\) tại \(\left\{\begin{matrix}x=y=32,5\\z=1951\end{matrix}\right.\)

Bình luận (2)
dinh huong
Xem chi tiết
Xyz OLM
17 tháng 4 2022 lúc 15:53

Ta có \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xyz}=1\)

\(\Leftrightarrow\dfrac{\left(yz\right)^2+\left(xz\right)^2+\left(xy\right)^2+2xyz}{\left(xyz\right)^2}=1\)

<=> (xy)2 + (yz)2 + (zx)2 + 2xyz = (xyz)2 

<=> (xy)2 + (yz)2 + (xz)2 + 2xyz(x + y + z) = (xyz)2 

<=> (xy + yz + zx)2 = (xyz)2 

<=> \(\left[{}\begin{matrix}xy+yz+zx=xyz\\xy+yz+zx=-xyz\end{matrix}\right.\)

+) Khi xy + yz + zx = -xyz 

=> \(\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=-1< 0\left(\text{loại}\right)\)

=> xy + yz + zx = xyz 

<=> \(xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=xyz\Leftrightarrow xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-1\right)=0\)

<=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

<=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

<=> \(\dfrac{x+y}{xy}=\dfrac{-\left(x+y\right)}{\left(x+y+z\right)z}\)

<=> \(\left(x+y\right)\left(\dfrac{1}{xz+yz+z^2}+\dfrac{1}{xy}\right)=0\)

<=> \(\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(zx+yz+z^2\right)xy}=0\)

<=> \(\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

Khi x = -y => y = 1 => P = 1

Tương tự y = -z ; z = -x được P = 1

Vậy P = 1 

Bình luận (1)
Hoàng Anh Thắng
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 3 2022 lúc 22:47

\(\left(x^3+1\right)\left(y^3+1\right)\left(z^3+1\right)=\dfrac{81}{64}x^3y^3z^3\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{81}{64}x^2y^2z^2\)

\(\Leftrightarrow3xyz\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{81}{64}x^3y^3z^3\)

 \(\Rightarrow\left[{}\begin{matrix}xyz=0\\\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{27}{64}x^2y^2z^2\end{matrix}\right.\)

Nếu \(\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{27}{64}x^2y^2z^2\) 

Ta có:

\(x^2-x+1=\dfrac{3}{4}x^2+\left(\dfrac{x}{2}-1\right)^2\ge\dfrac{3}{4}x^2\)

Tương tự: \(y^2-y+1\ge\dfrac{3}{4}y^2\) ; \(z^2-z+1\ge\dfrac{3}{4}z^2\)

Do các vế của các BĐT trên đều không âm, nhân vế với vế ta được:

\(\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)\ge\dfrac{27}{64}x^2y^2z^2\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{2}\) 

Thế vào  điều kiện \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=3xyz\) ko thỏa mãn (loại)

Vậy \(xyz=0\)

Bình luận (0)
Thảo Vi
Xem chi tiết
Trần huy huân
Xem chi tiết
Trần huy huân
Xem chi tiết